

# Measuring STEM Interest, West Identity, and Student Learning Outcomes

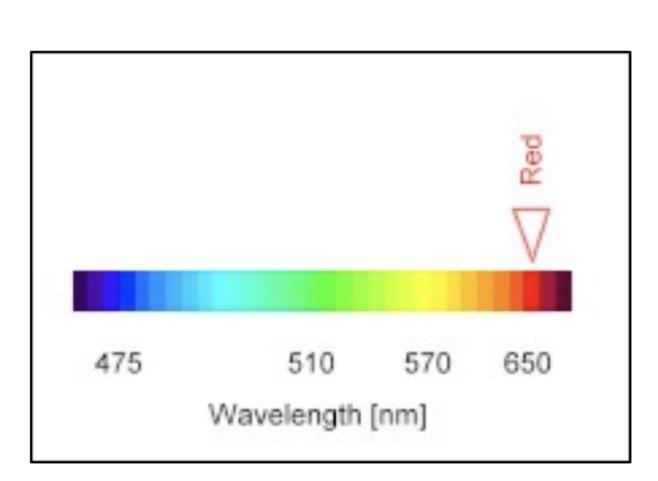
Presented by Joshua Valcarcel, M.A., & Dr. Andrew Grillo-Hill, WestEd



Partner

### NGSS Outcomes Measures Development

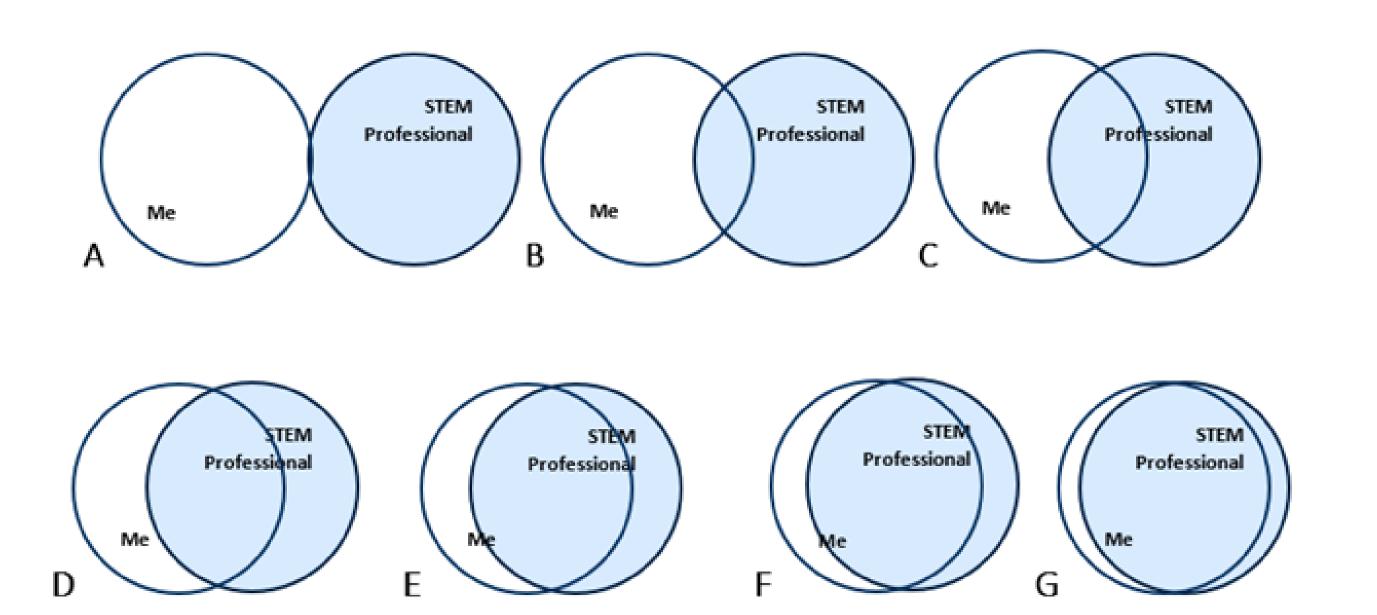
- 1. Initial review of program curriculum by evaluation staff with content expertise in chemistry and astronomy.
- 2. Review of curriculum alignment of program curriculum to NGSS
- 3. Drafting of assessment items
- 4. Review of items by program staff with content expertise in astronomy to ensure alignment
- 5. Internal reliability analysis of assessment data via Cronbach's alpha


## RCT Design & Implementation

- 1. Program agreed to recruit twice the normal number of program participants (teachers).
- 2. Evaluators randomly assigned teachers to intervention or waitlisted comparison
- 3. Study IDs were used to track student pre and post responses
- 4. Curriculum logs were collected from teachers to measure fidelity of implementation
- 5. Tracking logs were used to monitor survey administration and follow up with teachers as needed
- 6. Assessed between-group differences in pre-post changes while accounting for teacher nesting using hierarchical linear modeling

### Challenges and Solutions

| Challenges                     | Solutions                                            |  |  |  |
|--------------------------------|------------------------------------------------------|--|--|--|
| Equitable Program Access       | Waitlisting                                          |  |  |  |
| Data Tracking                  | Student Study IDs                                    |  |  |  |
| Ensuring Survey Administration | Teacher Tracking Logs                                |  |  |  |
| Implementation Fidelity        | Implementation Logs                                  |  |  |  |
| Teacher Confounds              | HLM Modeling                                         |  |  |  |
| Internal reliability           | Cronbach's alpha                                     |  |  |  |
| Between-group<br>differences   | Attrition rates and demographics as confounds in HLM |  |  |  |


#### Sample Assessment Item



## 6. Which statement explains the difference between red light and blue light?

- A. Red
  light is
  warmer
  than blue
  light.
- B. Red
  light is
  brighter
  than blue
  light.
- C. Red
  light
  moves
  slower
  than blue
  light.
- D. Red
  light has
  less energy
  than blue
  light.

### STEM Professional Identity Overlap Single Item Measure



### Sample In-House Attitude Items

- 1. I would be comfortable with a job/career that requires using science.
- 2. I am interested in becoming a scientist.

## Sample Test of Science-Related Attitudes Items

- 1. When I leave school, I would like to work with people who make discoveries in science.
- 2. I would dislike being a scientist after I leave school.

#### Study Instruments Over Time

|                                      | 2017-18 | 2018 – | 19 2020 –21 | 2021 –22 | 2022 –23 | 2023 –24 | 2024 –25 |
|--------------------------------------|---------|--------|-------------|----------|----------|----------|----------|
| Student Content Assessment           | X       | X      | X           | X        |          |          |          |
| In-house retrospective STEM attitude | X       | X      | X           | X        | X        | X        | X        |
| measures                             |         |        |             |          |          |          |          |
| In-house self-reported content gains | X       | X      | X           | X        | X        | X        |          |
| PIO-1 Measure                        |         |        |             | X        | X        | X        | X        |
| TOSRA                                |         |        |             | X        | X        | X        | X        |
| Attention Check Items                |         |        |             |          | X        | X        | X        |